User interface language: English | Español

SL Paper 2

The rate of the acid-catalysed iodination of propanone can be followed by measuring how the concentration of iodine changes with time.

I2(aq) + CH3COCH3(aq) → CH3COCH2I(aq) + H+(aq) + I(aq)

Suggest how the change of iodine concentration could be followed.

[1]
a.i.

A student produced these results with [H+] = 0.15 mol dm−3. Propanone and acid were in excess and iodine was the limiting reagent.

Determine the relative rate of reaction when [H+] = 0.15 mol dm−3.

M17/4/CHEMI/SP2/ENG/TZ1/01.a.ii

[2]
a.ii.

The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.

State and explain the relationship between the rate of reaction and the concentration of acid.

[2]
b.



Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.

Na2S2O3 (aq) + 2HCl (aq) → S (s) + SO(g) + 2NaCl (aq) + X

Identify the formula and state symbol of X.

[1]
a.

Suggest why the experiment should be carried out in a fume hood or in a well-ventilated laboratory.

[1]
b.

The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.

10.0 cm3 of 2.00 mol dm-3 hydrochloric acid was added to a 50.0 cm3 solution of sodium thiosulfate at temperature, T1. Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.

Show that the hydrochloric acid added to the flask in experiment 1 is in excess.

[2]
c.

Draw the best fit line of 1 t against concentration of sodium thiosulfate on the axes provided.

[2]
d.

A student decided to carry out another experiment using 0.075 mol dm-3 solution of sodium thiosulfate under the same conditions. Determine the time taken for the mark to be no longer visible.

[2]
e.

An additional experiment was carried out at a higher temperature, T2.

(i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T1 and T2, where T> T1.

(ii) Explain why a higher temperature causes the rate of reaction to increase.

[4]
f.

Suggest one reason why the values of rates of reactions obtained at higher temperatures may be less accurate.

[1]
g.



Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.

Methanol is usually manufactured from methane in a two-stage process.

CH4 (g) + H2O (g) CO (g) + 3H2 (g)
CO (g) + 2H2 (g) CH3OH (l)

Consider the first stage of the reaction.

CH4 (g) + H2O (g) CO (g) + 3H2 (g)

The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.

Draw a distribution curve at a lower temperature (T2) and show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T1.

[2]
a.

The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.

[1]
b.

Determine the overall equation for the production of methanol.

[1]
c(i).

8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm3. Use sections 2 and 6 of the data booklet.

[3]
c(ii).

Determine the enthalpy change, ΔH, in kJ. Use section 11 of the data booklet.

Bond enthalpy of CO = 1077 kJ mol−1.

[3]
d(i).

State the expression for Kc for this stage of the reaction.

[1]
d(ii).

State and explain the effect of increasing temperature on the value of Kc.

[1]
d(iii).



The thermal decomposition of dinitrogen monoxide occurs according to the equation:

2N2O (g) → 2N2 (g) + O2 (g)

The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.

The x-axis and y-axis are shown with arbitrary units.

Explain why, as the reaction proceeds, the pressure increases by the amount shown.

[2]
a.

Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.

[2]
b.

The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.

Sketch, on the axes in question 2, the graph that you would expect.

[2]
c.

The experiment gave an error in the rate because the pressure gauge was inaccurate. Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.

[1]
d.

The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.

The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.

Annotate and use the graph to outline why a catalyst has this effect.

[2]
e.



Magnesium reacts with sulfuric acid:

Mg(s) + H2SO4(aq) → MgSO4(aq) + H2(g)

The graph shows the results of an experiment using excess magnesium ribbon and dilute sulfuric acid.

M17/4/CHEMI/SP2/ENG/TZ2/05.a.i

Outline why the rate of the reaction decreases with time.

[1]
a.i.

Sketch, on the same graph, the expected results if the experiment were repeated using powdered magnesium, keeping its mass and all other variables unchanged.

[1]
a.ii.

Nitrogen dioxide and carbon monoxide react according to the following equation:

NO2(g) + CO(g) NO(g) + CO2(g)               ΔH = –226 kJ

Calculate the activation energy for the reverse reaction.

[1]
b.

State the equation for the reaction of NO2 in the atmosphere to produce acid deposition.

[1]
c.



Graphing is an important tool in the study of rates of chemical reactions.

Excess hydrochloric acid is added to lumps of calcium carbonate. The graph shows the volume of carbon dioxide gas produced over time.

Sketch a Maxwell–Boltzmann distribution curve for a chemical reaction showing the activation energies with and without a catalyst.

[3]
a.

Sketch a curve on the graph to show the volume of gas produced over time if the same mass of crushed calcium carbonate is used instead of lumps. All other conditions remain constant.

[1]
b.i.

State and explain the effect on the rate of reaction if ethanoic acid of the same concentration is used in place of hydrochloric acid.

[2]
b.ii.

Outline why pH is more widely used than [H+] for measuring relative acidity.

[1]
c.

Outline why H3PO4/HPO42− is not a conjugate acid-base pair.

[1]
d.



1-chloropentane reacts with aqueous sodium hydroxide.

The reaction was repeated at a lower temperature.

Identify the type of reaction.

[1]
a(i).

Outline the role of the hydroxide ion in this reaction.

[1]
a(ii).

Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency.

[2]
a(iii).

Sketch labelled Maxwell–Boltzmann energy distribution curves at the original temperature (T1) and the new lower temperature (T2).

[2]
b(i).

Explain the effect of lowering the temperature on the rate of the reaction.

[2]
b(ii).



Calcium carbonate reacts with hydrochloric acid.

CaCO3(s) + 2HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)

The results of a series of experiments in which the concentration of HCl was varied are shown below.

M18/4/CHEMI/SP2/ENG/TZ1/04.b

Outline two ways in which the progress of the reaction can be monitored. No practical details are required.

[2]
a.

Suggest why point D is so far out of line assuming human error is not the cause.

[1]
b.i.

Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.

[1]
b.ii.



A student titrated an ethanoic acid solution, CH3COOH (aq), against 50.0 cm3 of 0.995 mol dm–3 sodium hydroxide, NaOH (aq), to determine its concentration.

The temperature of the reaction mixture was measured after each acid addition and plotted against the volume of acid.

Curves X and Y were obtained when a metal carbonate reacted with the same volume of ethanoic acid under two different conditions.

Using the graph, estimate the initial temperature of the solution.

[1]
a.

Determine the maximum temperature reached in the experiment by analysing the graph.

[1]
b.

Calculate the concentration of ethanoic acid, CH3COOH, in mol dm–3.

[2]
c.

Determine the heat change, q, in kJ, for the neutralization reaction between ethanoic acid and sodium hydroxide.

Assume the specific heat capacities of the solutions and their densities are those of water.

[2]
d.i.

Calculate the enthalpy change, ΔH, in kJ mol–1, for the reaction between ethanoic acid and sodium hydroxide.

[2]
d.ii.

Explain the shape of curve X in terms of the collision theory.

[2]
e.i.

Suggest one possible reason for the differences between curves X and Y.

[1]
e.ii.



When dinitrogen pentoxide, N2O5, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:

N2O5 (g) → 2NO2 (g) + 12O2 (g)

Data for the decomposition at constant temperature is given.

Suggest how the extent of decomposition could be measured.

[1]
a.

Plot the missing point on the graph and draw the best-fit line.

[2]
b(i).

Deduce the relationship between the concentration of N2O5 and the rate of reaction.

[1]
b(ii).

Outline why increasing the concentration of N2O5 increases the rate of reaction.

[1]
b(iii).



Nickel catalyses the conversion of propanone to propan-2-ol.

Outline how a catalyst increases the rate of reaction.

[1]
a.

Explain why an increase in temperature increases the rate of reaction.

[2]
b.

Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.

[3]
c.

The diagram shows an unlabelled voltaic cell for the reaction

Pb2+(aq)+Ni(s)Ni2+(aq)+Pb(s)

Label the diagram with the species in the equation.

 

[1]
d(i).

Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.

[1]
d(ii).

Describe the bonding in metals.

[2]
d(iii).

Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.

[1]
d(iv).



3.26 g of iron powder are added to 80.0 cm3 of 0.200 mol dm−3 copper(II) sulfate solution. The following reaction occurs:

Fe (s) + CuSO4 (aq) → FeSO4 (aq) + Cu (s)

Determine the limiting reactant showing your working.

[2]
a.i.

The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.

[2]
a.ii.

The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.

Calculate the enthalpy change, ΔH, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.

[2]
b.i.

State another assumption you made in (b)(i).

[1]
b.ii.

The only significant uncertainty is in the temperature measurement.

Determine the absolute uncertainty in the calculated value of ΔH if the uncertainty in the temperature rise was ±0.2 °C.

[2]
b.iii.

Sketch a graph of the concentration of iron(II) sulfate, FeSO4, against time as the reaction proceeds.

[2]
c.i.

Outline how the initial rate of reaction can be determined from the graph in part (c)(i).

[2]
c.ii.

Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.

[2]
c.iii.



Magnesium is a reactive metal often found in alloys.

Organomagnesium compounds can react with carbonyl compounds. One overall equation is:

Compound B can also be prepared by reacting an alkene with water.

Iodomethane is used to prepare CH3MgI. It can also be converted into methanol:

CH3I + HO → CH3OH + I

Magnesium can be produced by the electrolysis of molten magnesium chloride.

Write the half-equation for the formation of magnesium.

[1]
a.

Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.

[2]
b.

State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.

[1]
c(i).

Identify the strongest force between the molecules of Compound B.

[1]
c(ii).

Draw the structural formula of the alkene required.

[1]
d(i).

Deduce the structural formula of the repeating unit of the polymer formed from this alkene.

[1]
d(ii).

Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).

[1]
e.

Identify the type of reaction.

[1]
f(i).

Outline the requirements for a collision between reactants to yield products.

[2]
f(ii).

The polarity of the carbon–halogen bond, C–X, facilitates attack by HO.

Outline, giving a reason, how the bond polarity changes going down group 17.

[1]
f(iii).



Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO3.

The second step of the lime cycle produces calcium hydroxide, Ca(OH)2.

Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.

Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)

Calcium carbonate is heated to produce calcium oxide, CaO.

CaCO3 (s) → CaO (s) + CO2 (g)

Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.

[2]
a.

Thermodynamic data for the decomposition of calcium carbonate is given.

Calculate the enthalpy change of reaction, ΔH, in kJ, for the decomposition of calcium carbonate.

[2]
b.

The potential energy profile for a reaction is shown. Sketch a dotted line labelled “Catalysed” to indicate the effect of a catalyst.

[1]
c(i).

Outline why a catalyst has such an effect.

[1]
c(ii).

Write the equation for the reaction of Ca(OH)2 (aq) with hydrochloric acid, HCl (aq).

[1]
d(i).

Determine the volume, in dm3, of 0.015 mol dm−3 calcium hydroxide solution needed to neutralize 35.0 cm3 of 0.025 mol dm−3 HCl (aq).

[2]
d(ii).

Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10−2 mol dm−3 solution of calcium hydroxide, a strong base.

[2]
d(iii).

Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.

[2]
e(i).

2.85 g of CaCO3 was collected in the experiment in e(i). Calculate the percentage yield of CaCO3.

(If you did not obtain an answer to e(i), use 4.00 g, but this is not the correct value.)

[1]
e(ii).

Outline how one calcium compound in the lime cycle can reduce a problem caused by acid deposition.

[1]
f.



This question is about peroxides.

Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.

2H2O2 (aq)  KI (aq) O2 (g) + 2H2O (l)

Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.

[1]
a.

In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.

The data for the first trial is given below.

Plot a graph on the axes below and from it determine the average rate of formation of oxygen gas in cm3 O2 (g) s−1.

Average rate of reaction:

[3]
b(i).

Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T1 and T2, where T2 > T1.

[2]
b(ii).

Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(ii), why an increased temperature causes the rate of reaction to increase.

[2]
b(iii).

MnO2 is another possible catalyst for the reaction. State the IUPAC name for MnO2.

[1]
b(iv).

Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.

H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)

[1]
c.

Sodium percarbonate, 2Na2CO3•3H2O2, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.

Mr (2Na2CO3•3H2O2) = 314.04

Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.

[2]
d.



Sulfur trioxide is produced from sulfur dioxide.

2SO2 (g) + O2 (g) 2SO3 (g)          ΔH = −196 kJ mol−1

The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.

Nitric acid, HNO3, is another strong Brønsted–Lowry acid. Its conjugate base is the nitrate ion, NO3

Outline, giving a reason, the effect of a catalyst on a reaction.

[2]
a.

On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T1 and T2, where T2 > T1.

[3]
b(i).

Explain the effect of increasing temperature on the yield of SO3.

[2]
b(ii).

State the product formed from the reaction of SO3 with water.

[1]
c(i).

State the meaning of a strong Brønsted–Lowry acid.

[2]
c(ii).

Draw the Lewis structure of NO3.

[1]
d(i).

Explain the electron domain geometry of NO3.

[2]
d(ii).



Copper forms two chlorides, copper(I) chloride and copper(II) chloride.

An electrolysis cell was assembled using graphite electrodes and connected as shown.

State the electron configuration of the Cu+ ion.

[1]
a(i).

Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.

4HCl (g) + O2 (g) → 2Cl2 (g) + 2H2O (g)

Calculate the standard enthalpy change, ΔHθ, in kJ, for this reaction, using section 12 of the data booklet.

[2]
a(ii).

The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.

Annotate both charts to show the activation energy for the catalysed reaction, using the label Ea (cat).

[2]
a(iii).

Explain how the catalyst increases the rate of the reaction.

[2]
a(iv).

Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl2xH2O.

A student heated a sample of hydrated copper(II) chloride, in order to determine the value of x. The following results were obtained:

Mass of crucible = 16.221 g
Initial mass of crucible and hydrated copper(II) chloride = 18.360 g
Final mass of crucible and anhydrous copper(II) chloride = 17.917 g

Determine the value of x.

[3]
b.

State how current is conducted through the wires and through the electrolyte.

Wires: 

Electrolyte:

[2]
c(i).

Write the half-equation for the formation of gas bubbles at electrode 1.

[1]
c(ii).